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Abstract
One- and two-dimensional operators which originate from the asymptotic form
of the three-body Coulomb wave equation in parabolic coordinates are treated
within the context of a square integrable basis set. The matrix representations
of Green’s functions corresponding to these operators are obtained.

PACS numbers: 02.30.Gp, 03.65.Nk

1. Introduction

The three Coulomb (3C) wavefunctions [1, 2] have been introduced to approximate the three-
body continuum Coulomb wave function. The 3C wave functions, provide asymptotics for the
three-body wave functions in the region where the distances between the particles are large,
but are not physically acceptable when the particles are near to each other. In the past few
years many works have been published with different proposals to simply improve the 3C (see
[3–5] and references therein). In this paper we seek to consider the possibilities for computing
the three-body continuum Coulomb wavefunction which are afforded by expansion in a set of
square-integrable functions. For the purpose of clarity, we outline the derivation [6] of the 3C
wave functions.

The Hamiltonian of a three-body Coulomb system reads

H = 1

2µ12
K2 +

1

2µ3
k2 +

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13
. (1)

Here, K and k are the momenta conjugate to the Jacobi vectors R and r:

R = r1 − r2, r = r3 − m1r1 + m2r2

m1 + m2
. (2)

The reduced masses are

µ12 = m1m2

m1 + m2
, µ3 = (m1 + m2)m3

m1 + m2 + m3
. (3)
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Inserting

� = ei(K·R+k·r)� (4)

into the Schrödinger equation

H� = E�

(
E = 1

2µ12
K2 +

1

2µ3
k2

)
(5)

then yields

ei(K·R+k·r)
[
− 1

2µ12
�R − 1

2µ3
�r − i

µ12
K · ∇R − i

µ3
k · ∇r

+
Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13
+

1

2µ12
K2 +

1

2µ3
k2

]
� = ei(K·R+k·r)E�, (6)

i.e.[
− 1

2µ12
�R − 1

2µ3
�r − i

µ12
K · ∇R − i

µ3
k · ∇r +

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13

]
� = 0. (7)

The differential operator

D = 1

2µ12
�R +

1

2µ3
�r +

i

µ12
K · ∇R +

i

µ3
k · ∇r (8)

is considered in terms of parabolic coordinates introduced by Klar [6]

ξj = rls + k̂ls · rls , ηj = rls − k̂ls · rls , (9)

where rls and kls are the relative coordinate and momentum vectors between the particles l
and s. Here j, l, s is a cyclic permutation of 1, 2, 3. Klar [6] proposed to split D into two parts

D = D0 + D1. (10)

The D0 term contains one-variable derivatives ∂
∂ξj

, ∂
∂ηj

, ∂2

∂ξ 2
j

, ∂2

∂η2
j

whereas D1 contains all mixed

second derivatives ∂2

∂ξj ∂ξl
, ∂2

∂ηj ∂ηl
, j �= l and ∂2

∂ξj ∂ηl
. Thus the D0 term and Coulomb interactions

form a leading term which provides a three-body continuum wavefunction that satisfies the
exact asymptotic boundary conditions for Coulomb systems in the limit of all particles being
far from each other. The operator D1 is regarded as a small perturbation which does not violate
the boundary conditions [6]. Then the approximate equation[

−D0 +
Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13

]
� = 0 (11)

in terms of parabolic coordinates (9) reads⎧⎨
⎩

3∑
j=1

1

µls(ξj + ηj )
[ĥξj

+ ĥηj
+ 2kls tls]

⎫⎬
⎭ � = 0, (12)

where tls = ZlZsµls

kls
, µls = mlms

ml+ms
. Here the operators ĥξj

and ĥηj
are defined by

ĥξj
= −2

(
∂

∂ξj

ξj

∂

∂ξj

+ iklsξj

∂

∂ξj

)
,

ĥηj
= −2

(
∂

∂ηj

ηj

∂

∂ηj

− iklsηj

∂

∂ηj

)
.

(13)
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Equation (12) is separable with infinite number of solutions. The solution � can be represented
in product form: [6]

� =
3∏

j=1

fj (ξj , ηj ) (14)

and each of the functions fj (ξj , ηj ) is a solution of equation [6]

1

µls(ξj + ηj )

[
ĥξj

+ ĥηj
+ 2kls tls

]
fj (ξj , ηj ) = −Cjfj (ξj , ηj ). (15)

The separation constants Cj have to satisfy the constraint [6]

C1 + C2 + C3 = 0. (16)

Equation (15) is again separable; therefore the solution can be represented in the form
fj (ξj , ηj ) = uj (ξj )vj (ηj ). uj (ξj ) and vj (ηj ) satisfy the equations [6][

ĥξj
+ 2klsAj + µlsCξj

]
uj (ξj ) = 0,[

ĥηj
+ 2klsBj + µlsCηj

]
vj (ηj ) = 0,

(17)

where the separation constants Aj and Bj satisfy the constraint

Aj + Bj = tls . (18)

The separation constants must have the values Cj = Bj = 0 and Aj = tls for outgoing waves
(coordinate ξj ) or Cj = Aj = 0 and Bj = tls for incoming waves (coordinate ηj ) [3]. Regular
solutions to (17) are [6]

uj (ξj ) = 1F1(it ls, 1;−iklsξj ) (vj (ηj ) = 1 and fj (ξj , ηj ) = uj (ξj )) (19)

for an outgoing wave, and

vj (ηj ) = 1F1(−it ls, 1; iklsηj ) (uj (ξj ) = 1 and fj (ξj , ηj ) = vj (ηj )) (20)

for an incoming wave. Thus a solution � with pure outgoing behavior can be written as a
product the of three independent two-body Coulomb wave functions:

�3C =
3∏

j=1

uj (ξj ). (21)

2. Formulation of the problem

One way to improve �3C is to take into account (some terms of) D1 that is expected to
describe short-range Coulomb correlations [6]. We propose to expand the wavefunction � in
a square-integrable function series

� =
∑
N

aN |N 〉, (22)

|N 〉 =
3∏

j=1

φnj mj
(ξj , ηj ). (23)

The parabolic Sturmian functions φnj mj
are used in (22) and (23),

φnj mj
(ξj , ηj ) = ϕnj

(ξj )ϕmj
(ηj ), (24)

3
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ϕn(x) =
√

2b e−bxLn(2bx), (25)

where b is the scale parameter. The summation in (22) is over nj and mj from 0 to ∞. The
basis set (25) has been used in the analysis of the Coulomb potential within the parabolic
formulation of the J -matrix method [10].

Let ĥ denote the (long-range) operator which is obtained by multiplying the expression
in the figured brackets on the left-hand side of (12) by

∏3
j=1 µls(ξj + ηj ) (from left). The

(short-range) operator V̂ is obtained by taking the product of
∏3

j=1 µls(ξj + ηj ) and the part
of D1 that is taken into account.The projection of the equation

[ĥ + V̂ ]� = 0 (26)

onto the functions |N 〉 (23) yields an infinite set of equations in the coefficients aN

[h + V ]a = 0, (27)

where h and V are the matrices with elements 〈N |ĥ|N ′〉 and 〈N |V̂ |N ′〉, respectively, and a

is the vector with components aN . This equation can be rewritten, in view of the boundary
condition (21), in the form

a = a(0) − h
−1V a, (28)

where a
(0)
N = 〈N |�3C〉.

It is suggested that the short-range operator V̂ can be approximated by a finite-order
matrix V . The operator ĥ matrix h is infinite. Because of this, the six-dimensional resolvent
operator matrix G (that is the matrix inverse of h) should as far as possible be carried out

analytically. This is a complicated problem. Note that ĥ can be written, in view of (12), (15)
and (16), as

ĥ = µ13(ξ2 + η2)µ12(ξ3 + η3)ĥ1 + µ23(ξ1 + η1)µ12(ξ3 + η3)ĥ2 + µ23(ξ1 + η1)µ13(ξ2 + η2)ĥ3,

(29)

where

ĥj = ĥξj
+ ĥηj

+ 2kls tls + µlsCj (ξj + ηj ). (30)

In this paper we restrict ourselves to the construction of matrices of the Green’ functions
corresponding to the two-dimensional operators (30). First we consider the one-dimensional
operators

ĥξ + 2kt + Cξ, ĥη + 2k(t0 − t) + Cη (31)

(Here we omit the indices and the factor µls , the constraint (18) is also taken into account.)
To treat these operators within the context of square-integrable basis set, the J -matrix method
[7, 8] or the tools of the ‘Tridiagonal Physics’ program (see [9] and the reference therein) can
be employed.

In section 3 using the tridiagonal matrix representations of one-dimensional operators (31)
in the bases (25), we construct the corresponding Green’s function matrices. In this case we do
not seek to determine Green’s matrices uniquely. In section 4 the weight function is obtained for
the orthogonal polynomials satisfying the three-term recurrence relation. The two-dimensional
Green’s function matrix elements are expressed as convolution of one-dimensional Green’s
matrix elements in section 5. An orthogonality relation employed in the two-dimensional
Green’s matrix construction is derived in appendix.

4
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3. One-dimensional Coulomb Green’s function matrices

(a) C = 0

The matrix representation hξ + 2ktIξ (Iξ is the unit matrix) of the operator ĥξ + 2kt in the basis
set {ϕn(ξ)}∞n=0 (25) is tridiagonal:

hξ + 2ktIξ =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 d1

a1 b1 d2 0

a2 b2 d3

a3 × ×
0 × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

, (32)

where

bn = (b + ik) + 2bn + 2kt, an = (b − ik)n, dn = (b + ik)n. (33)

To construct the Green’s function matrix gξ , which is matrix inverse of the infinite tridiagonal
matrix (32), consider the three-term recurrence relation

anwn−1 + bnwn + dn+1wn+1 = 0, n � 1. (34)

It can be easily verified that

pn(t; ζ ) = (−1)n

n!

�(n + 1 − it)

�(1 − it)
2F1(−n, it;−n + it; ζ ), (35)

where ζ = b−ik
b+ik , is the ‘regular’ solution of (34) which satisfies the initial conditions:

p0(t; ζ ) = 1, b0p0(t; ζ ) + d1p1(t; ζ ) = 0. (36)

Suffice to say that apart from the factor
√

2
b

(
ζ+1

2

)it
, pn is the coefficient of the nth basis function

ϕn(ξ) (25) in the expansion of u(ξ) (19). Note that pn are polynomials of degree n in t.
The second solution qn of the recursion (34) can be obtained from the condition that qn

satisfies the same differential equation as pn [8]. In other words, if pn ∼ 2F1(a, b; c; z), then
qn ∼ z1−c

2F1(a − c + 1, b − c + 1; 2 − c; z). It is readily verified that an appropriate qn(t; ζ )

is

qn(t; ζ ) = − n!�(1 − it)

�(n + 2 − it)
(−ζ )n+1

2F1(1 − it, n + 1; n + 2 − it; ζ )

= − n!�(1 − it)

�(n + 2 − it)

(
ζ

ζ − 1

)n+1

2F1

(
n + 1, n + 1; n + 2 − it; ζ

ζ − 1

)
. (37)

This satisfies the initial condition

b0q0(t; ζ ) + d1q1(t; ζ ) = b − ik. (38)

Multiplying [hξ + 2ktIξ ] by the diagonal matrix Z = [1, ζ−1, . . . , ζ−n, . . .], we obtain
the symmetric tridiagonal matrix T:

T = Z[hξ + 2ktIξ ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

β0 α1

α1 β1 α2 0

α2 β2 α3

α3 × ×
0 × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

(39)

5
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with nonzero elements

βn = bn/ζ
n, αn = dn/ζ

n−1. (40)

Note that pn and qn satisfy the three-term recurrence relation

αnwn−1 + βnwn + αn+1wn+1 = 0, n � 1. (41)

Thus, to invert the symmetric tridiagonal matrix T, one can draw on the standard method
[11, 12]. Namely, the elements of a Green’s matrix gT , which is the matrix inverse to T, can
be determined by

gT
nm(t) = pν(t; ζ )qµ(t; ζ )

W(q, p)
. (42)

Henceforward µ and ν are the greater and lesser of n and m, respectively. The Wronskian W

is defined as

W(q, p) = αn[qn(t; ζ )pn−1(t; ζ ) − qn−1(t; ζ )pn(t; ζ )]

= b − ik = −2ik

(
ζ

ζ − 1

)
. (43)

Green’s matrix gξ = [hξ + 2ktIξ ]−1 is related to gT : gξ = gT Z. Therefore, we can express the
matrix gξ elements in the form

gξ
nm(t) = i

2k

(
ζ − 1

ζ

)
1

ζm
pν(t; ζ )qµ(t; ζ ). (44)

From (13) it follows that Green’s matrix gη = [hη+2ktIη]−1 and gξ are complex conjugates
(for real k and t):

gη
nm(t) = (

gξ
nm(t)

)∗
. (45)

Note that there is an ambiguity in determining the matrix gξ , since the solution qn(t; ζ )

is not unique:

q̃n(t; ζ ) = qn(t; ζ ) + y(t)pn(t; ζ ), (46)

where y(t) is an arbitrary function of t, also satisfies (34).

(b) C �= 0

It is not difficult to convince oneself that the differential equation

[ĥξ + 2kt + Cξ ]u(ξ) = 0 (47)

is satisfied by the function

u(ξ) = e
i
2 (γ−k)ξ

1F1(iτ, 1;−iγ ξ), (48)

where

γ = k

√
1 − 2C

k2
, τ = k

γ

(
t +

i

2

)
− i

2
. (49)

Clearly, in the limit C = 0 the function (48) reduces to (19).
Because the operator ξ , evaluated in the basis (25), has the symmetric tridiagonal form

Qn,n′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

2b
n, n′ = n − 1,

1

2b
(2n + 1), n′ = n,

− 1

2b
(n + 1), n′ = n + 1,

(50)

6
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the matrix representation of the operator ĥξ + 2kt + Cξ is also tridiagonal. Thus,

hξ + 2ktIξ + CQξ =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 d1

a1 b1 d2 0

a2 b2 d3

a3 × ×
0 × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

, (51)

where

bn =
(

b +
C

2b
+ ik

)
+ 2

(
b +

C

2b

)
n + 2kt,

an =
(

b − C

2b
− ik

)
n, dn =

(
b − C

2b
+ ik

)
n.

(52)

Then, if we consider the coefficients of the regular solution (48) expansion in the basis
set (25), we obtain that

sn(t;C) = θnpn(τ ; ζ ), (53)

where

θ = 2b + i(γ − k)

2b − i(γ − k)
, λ = 2b − i(γ + k)

2b + i(γ + k)
, ζ = λ

θ
, (54)

is the solution of the three-term recurrence relation

anwn−1 + bnwn + dn+1wn+1 = 0, n � 1. (55)

It is easy to verify that two linearly independent second solutions of equation (55) can be
expressed in the form

c(−)
n (t;C) = (−)nλn+1 n!�(1 − iτ)

�(n + 2 − iτ)
2F1(1 − iτ, n + 1; n + 2 − iτ ; ζ ),

c(+)
n (t;C) = (−)nθn+1 n!�(iτ)

�(n + 1 + iτ)
2F1(iτ, n + 1; n + 1 + iτ ; ζ−1).

(56)

Note that the matrix hξ + 2ktIξ + CQξ inversion procedure is simplified if we introduce
the symmetric tridiagonal matrix T:

T = Z[hξ + 2ktIξ + CQξ ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

β0 α1

α1 β1 α2 0

α2 β2 α3

α3 × ×
0 × × ×

⎞
⎟⎟⎟⎟⎟⎟⎠

. (57)

Here Z is the diagonal matrix: Z = [1, χ−1, . . . , χ−n, . . .], χ = b− C
2b

−ik

b− C
2b

+ik
. The elements βn

and αn are given by

βn = bn/χ
n, αn = dn/χ

n−1. (58)

Then, it is easy to check that sn and cn also satisfy the recursion equation

αnwn−1 + βnwn + αn+1wn+1 = 0, n � 1, (59)

and the Wronskian

W(c(±), s) = αn

[
c(±)
n (t;C)sn−1(t;C) − c

(±)
n−1(t;C)sn(t;C)

]
(60)

7
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is independent of n. Namely,

W(c(±), s) = b − C

2b
− ik = −2ik

(
χ

χ − 1

)
. (61)

Finally, given the two linearly independent solutions sn and c(−)
n of equation (55), we can

express Green’s matrix gξ = [hξ + 2ktIξ + CQξ ]−1 elements in the form

gξ
nm(t;C) = sν(t;C)c(−)

µ (t;C)

W(c(−), s)
χ−m = i

2k

(
χ − 1

χ

)
θn+m+1

χm
pν(τ ; ζ )qµ(τ ; ζ ). (62)

Clearly, Green’s matrix gη = [hη + 2ktIη + CQη]−1 is obtained from gξ by replacing
t → −t, k → −k (this leaves kt unchanged).

4. Orthogonal polynomials pn

In this section we obtain the weight function with respect to which the polynomials pn (35)
are orthonormal.

Kummer’s relation (15.3.7) in [13] expresses the solution c(+)
n as a combination of the

other two:

c(+)
n (τ ;C) = c(−)

n (τ ;C) + 2π iθρ(τ ; ζ )sn(τ ;C), (63)

where

ρ(τ ; ζ ) = �(1 − iτ)�(iτ)

2π i
(−ζ )iτ . (64)

Henceforward it is considered that

|arg(−ζ )| < π. (65)

Consider the integral

I(ζ ) =
∫
C

dτρ(τ ; ζ ), (66)

where C runs along the real axis, except for an infinitesimal indentation on the underside of
the pole τ = 0; see figure 1. By closing the contour in the upper half of the complex τ -plane
I(ζ ) is reduced to the sum of the residues at the poles τ� = i�, � = 0, 1, . . . ,∞:

I(ζ ) = −i
∞∑

�=0

1

ζ �
, (67)

i.e.

I(ζ ) = iζ

1 − ζ
. (68)

Note that for Im(ζ ) �= 0 (65) implies that

ρ(τ ; ζ ) =

⎧⎪⎨
⎪⎩

ζ iτ

1 − e2πτ , −π < arg(ζ ) < 0,

ζ iτ

e−2πτ − 1
, 0 < arg(ζ ) < π.

(69)

Using the Sokhotsky formula we obtain

I(ζ ) = P
∫ ∞

−∞
dτ ρ(τ ; ζ ) − i

2
. (70)

8
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In this case (69) provides the convergence of the principal-value integral on the right hand side
of (70).

Clearly, integrals∫
C

dτρ(τ ; ζ )pn(τ ; ζ )pm(τ ; ζ ) (71)

can be expanded in terms of derivatives of (66). It is now easy to obtain that

i

ζ n

(
ζ − 1

ζ

) ∫
C

dτρ(τ ; ζ )pn(τ ; ζ )pm(τ ; ζ ) = δnm, (72)

i.e. ρ (64) is the weight function for the orthogonal polynomials pn (35).
For Im(ζ ) �= 0 we can rewrite the orthonormality relation (72) as

i

ζ n

(
ζ − 1

ζ

)(
P

∫ ∞

−∞
d τρ(τ ; ζ )pn(τ ; ζ )pm(τ ; ζ ) − i

2
(−1)n+m

)
= δnm, (73)

where the weight function ρ in the form of (69) is used. Note that in the case of C = 0 we
have ζ = eiϕ, ϕ < 0, and the weight function reduces to

ρ0(t; ζ ) = e−ϕt

1 − e2πt
. (74)

It is preferable, however, to use the weight function

σ(s; ζ ) ≡ ρ
(
s − i

2
; ζ

)
= �

(
1
2 − is

)
�

(
1
2 + is

)
2π i

(−ζ )is+ 1
2 . (75)

It is readily verified that∫ ∞

−∞
ds σ (s; ζ ) = iζ

1 − ζ
(76)

and therefore

i

ζ n

(
ζ − 1

ζ

) ∫ ∞

−∞
ds σ (s; ζ )pn

(
s − i

2
; ζ

)
pm

(
s − i

2
; ζ

)
= δnm. (77)

It may be remarked that the polynomials pn are discrete analogues of the charge parabolic
Coulomb Sturmians introduced in [14].

5. Two-dimensional Green’s function matrices

In this section we obtain a matrix representation G(t0;C) of Green’s function (resolvent) of
the operator

ĥ = ĥξ + ĥη + 2kt0 + C(ξ + η). (78)

Formally G(t0;C) is the matrix inverse of the infinite matrix

h = hξ ⊗ Iη + Iξ ⊗ hη + 2kt0Iξ ⊗ Iη + C(Qξ ⊗ Iη + Iξ ⊗ Qη), (79)

i.e.

hG(t0;C) = Iξ ⊗ Iη. (80)

9
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Figure 1. The path of integration C in (66).

(a) C = 0

The elements of G(t0) ≡ G(t0; 0) can be expressed as a convolution integral (see, e.g. [15])

Gn1n2,m1m2(t0) =
∫
C0

dt g̃ξ
n1m1

(t)g̃η
n2m2

(t0 − t), (81)

where the integrand contains functions g̃
ξ
nm and g̃

η
nm that are proportional to the one-

dimensional Green’s function matrix elements (the non-uniqueness (46) of the solution qn

is taken into account):

g̃ξ
nm(t) = i

2k

(
ζ − 1

ζ

)
1

ζm
pν(t; ζ )[Aξqµ(t; ζ ) + xµ(t)pµ(t; ζ )]Bm (82)

and

g̃η
nm(t) = i

2k
(ζ − 1)ζmpν(−t; ζ−1)[Aηqµ(−t; ζ−1) + yµ(t)pµ(−t; ζ−1)]Dm. (83)

Inserting (81)–(83) into (80) then gives the restriction on the factors Aξ and Aη, functions
{xn(t)}∞n=0 and {yn(t)}∞n=0, diagonal matrices B = [B0, B1, . . .] and D = [D0,D1, . . .], and
the path of integration C0, namely,

AηDm2

∫
C0

dt g̃ξ
n1m1

(t) = Un1m2δn1m1 , (84)

AξBm1

∫
C0

dt g̃η
n2m2

(t0 − t) = Vm1n2δn2m2 , (85)

Un1m2 + Vm1n2 = 1. (86)

If we choose the contour C (see figure 1) as the path of integration in (81) (and (84), (85)),
we can draw on the orthonormality relation (72) to determine the rest of the parameters. In
this case we readily check that, in particular, the set: Aξ = 0, xn(t) = 2π iρ0(t; ζ ), Aη =
k
iπ , yn(t) ≡ 0, Bn = Dn = 1, satisfies conditions (84)–(86), and hence the elements Gn1n2,m1m2

can be expressed in the form

Gn1n2,m1m2(t0) = i

ζm1

(
ζ − 1

ζ

)(
P

∫ ∞

−∞
dtρ0(t; ζ )pn1(t; ζ )pm1(t; ζ )gη

n2m2
(t0 − t)

− i

2
(−1)n1+m1gη

n2m2
(t0)

)
. (87)

Further, combining (72) with (A.1) and (45), we can obtain another allowable sets of the
parameters. For instance, Aξ = 1, xn(t) = 2π iρ0(t; ζ ), Aη = k

iπ , yn(t) ≡ 0, Bn = Dn = 1.

10
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(b) C �= 0

The elements of the matrix G(t0;C) may be written as the convolution integral

Gn1n2,m1m2(t0;C) =
∫ ∞

−∞
dsg̃ξ

n1m1
(t;C)gη

n2m2
(t0 − t;C), (88)

where s = k
γ

(
t + i

2

)
and τ = s − i

2 (see (49)). Here, the non-uniqueness of only gξ is taken

into consideration for simplicity, i.e. g̃
ξ
nm and g

η
nm are taken to be

g̃ξ
nm(t;C) = i

2k

(
χ − 1

χ

)
θn+m+1

χm
pν(τ ; ζ )[Aξqµ(τ ; ζ ) + xµ(τ)pµ(τ ; ζ )]Bm, (89)

gη
nm(t0 − t;C) = i

2k

(χ − 1)χm

θn+m+1
pν

(
τ − k

γ
t0; ζ−1

)
qµ

(
τ − k

γ
t0; ζ−1

)
. (90)

The integration over s in (88) is performed on the assumption that s and C (γ ) are independent
of one another.

Allowable parameters Aξ , xn(τ ) and Bm can be determined by substituting (88)–(90)
into (80). For instance, putting Aξ = 0 and xn(τ ) = 2kρ(τ ; ζ ), we obtain Bm =

1
θ2m+1

(ζ−1)

(χ−1)

(
χ

ζ

)m+1
. Thus the matrix elements of the two-dimensional Green’s function can

be written in the form

Gn1n2,m1m2(t0;C) = i

ζm1

(
ζ − 1

ζ

)
θn1−m1

∫ ∞

−∞
ds σ (s; ζ )pn1(τ ; ζ )pm1(τ ; ζ )gη

n2m2
(t0 − t;C).

(91)

6. Conclusion

The six-dimensional Green’s function matrix G can be expressed as a convolution integral

G =
∫ ∫

dC1dC2G1(t23;µ23C1) ⊗ G2(t13;µ13C2) ⊗ G3(t12;−µ12(C1 + C2)) (92)

over the separation constants C1 and C2 (the constraint (16) is taken into account). Here
Gj (tls;µlsCj ) are the two-dimensional Green’s function matrices obtained in the previous
section. Note that Cj = − 1

2µls

(
γ 2

j − k2
ls

)
plays the role of the energy. Before we can use

the integral (92), we need to study the properties of Gj (tls;µlsCj ) considered a functions of
Cj . In particular, for Gj (tls;µlsCj ) an analogue of the orthogonality relation (A1) should be
obtained.
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Appendix. One useful orthogonality relation

In this appendix we derive the orthogonality relation

2ik

π

∫ ∞

−∞
dtgξ

nm(t) = δnm. (A.1)

11
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Using the integral representation (equation (15.3.1) in [13]) of the hypergeometric function
in (37), we can rewrite the integral on the left-hand side of (A.1) in the form

1

π

(
ζ

ζ − 1

)µ 1

ζm

∫ 1

0
dx

xµ(
1 − x

ζ

ζ−1

)µ+1

∫ ∞

−∞
dtpν(t; ζ ) e−it ln(1−x). (A.2)

Note that the integral over t in (A.2) consists of integrals∫ ∞

−∞
dt (−it)� e−it ln(1−x) = 2π

[
(x − 1)

d

dx

]�

δ(x), � � ν � µ, (A.3)

i.e. is expressed in terms of derivatives of the delta function. Further, introducing the function

yj (x) = xµ(x − 1)j(
1 − x

ζ

ζ−1

)µ+1 , (A.4)

we obtain

Ij� ≡
∫ 1

0
dx yj (x)δ(�)(x) =

⎧⎨
⎩

1

2
(−1)�y

(�)
j (0) = µ!

2
(−1)�+j , � = µ,

0, � < µ.

(A.5)

From (A.5) it follows that the integral in (A.2) is nonzero if n = m(=ν = µ). In this case
the only contribution to the integral comes from the leading term of the polynomial pn(t; ζ )

(which is equal to 1
n! (ζ − 1)n(−it)n). Thus, we obtain for (A.2):

1

π

(
ζ

ζ − 1

)n 1

ζ n

1

n!
(ζ − 1)n2πInn = 1. (A.6)
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